回溯算法

基本概念:

回溯算法(back tracking)实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

​ 许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。

基本思想:

在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。

​ 若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

​ 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

用回溯法解题的一般步骤:

  1. 针对所给问题,确定问题的解空间:

    首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。

  2. 确定结点的扩展搜索规则

  3. 以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

回溯法的一般实现:

回溯法一般有两种代码实现方案,递归方法和非递归方法。

坚持原创技术分享,您的支持将鼓励我继续创作!